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The relationship between the flavour identifications of staggered fermions in configuration and 1n momentum space 1s
clanified for mteracting theortes It 1s demonstrated that these identification schemes are 1dentical 1n the continuum himit.

1. The staggered fermion formulation [1] has certain advantages over other methods. Farstly, since there 1s only
one field component per site and per colour, there is a considerable advantage for numerical simulations. Second-
ly, from the theoretical pont of view, 1t 1s also attractive because the formulation retains a continuous remnant
of the chiral symmetry of the continuum theory.

However, the species-doubling problem is still present. The task of 1dentifying these species as different flavours
of quark is non-trvial, and has only recently been studied in the context of interacting theories [2—5]. The aim
of this letter 1s to clarify these discussions.

In what follows we work on a four-dimensional, hypercubic, euchidean lattices of spacing a. Coordinates and
fields are dimensionful. We use hermitean gamma matrices, {7“, Y, 1= 28,75 =Y172737%3- The sixteen vectors
Awith4,=0or1are frequently used. A basis for the Clifford algebra is then given by

A, Ay A; A
Cy=71"73%73 %7t

2. Starting from the free staggered fermion action with degenerate mass

sp=— 2 2 ,(9% () 35 xx +aid) ~ xx -] + REN)

-1
Ma€Zh, ay(x)=(-1)7 Tt (1)

there are essentially two approaches to flavour identification. 1n configuration space [3,6], and tn momentum space
[2.,4].

In configuration space, the first stage 1s to partition the lattice into hypercubes, thereby identifying sixteen
one-component fields on a lattice of spacing 2a [3]

x40 =ix( +ad), X 0)=3X( +ad) ylae€z?, @

Then, by means of a unitary transformation, quark fields with spinor («) and flavour (@) indices are defined

1 _ 1 -
q*0) =3 DTEX40), T0) =5 20 X407 ©)
in terms of which the Fourter transformed action 1s
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n/2a
d4p ~
Sp=— P q(p) 2 [(1/2a)sin(2ap )y, ® 1 — {[1 — cosQap,)]/2a}ys ®,t5]
@m? e g -
—m{2a u
+m1®1)’q(p), C)
with t, = 'y;, acting in flavour space. Here we have adopted the convention
n/2a 44 n/2a a4
W)= [ LT, an= [ =L exe-pnT@). (5)
—m/2a (2m) —n/2a (2m)

In momentum space, a very similar procedure can be adopted. After Founer transforming eq. (1), using the same
convention as in (5) with @ replacing 2a, we define sixteen one-component fields by partitioning the Brillouin
zone [4]:

F40)=X[p+ (@Al , $4(p)=XIp+(w/a)Aa], pE[-nj2a,n/2a[. ©)
In terms of these fields, (1) may be wntten
nl2a

a4 ~ . ~

where, alternatively to the expressions of ', given in ref. [4] in terms of direct products of Pauli matrices, we can
write.

Cap = 3 CZ;/) (~1)A - C*B - Dtr(l‘gv AVIE )

We now define quark fields with spinor («) and flavour (z) indices via a unitary transformation V'

7oy = AE VaUS (b)), $p)= AE L ©)
where
vie=1 2 -1y B (10)

Thus differs from the transformation defined in ref. [4] by a rotation in flavour space; that 1s, their flavour ma-
trices &, are related to 7, by a unitary transformation. The action then takes the form

mf2a

45 ~ ~

Note that bot ¢ and y are completely non-local when expressed 1n terms of x in configuration space.

The key difference between (4) and (11) is that the latter is diagonal n flavour space, whereas the former con-
tains an explcit flavour mixing term of O(a) in the naive continuum limit. This 1s associated with the discontinuity
at the Brilloutn zone boundary exhibited by the propagator derived from (11), which indicates the non-locality of
this interpretation 1n configuration space.
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3. Gauge interactions are introduced 1n the usual manner

=2 I ( 2 0,00 55 RV, 00 +ai) ~ Xex +a) U (@] +mXe9xco ) (12)

This interaction respects the symmetries (lattice, chiral and charge conjugation) of the free action, as discussed

by Golterman and Smit [4]. These authors go on to show that the 1dentification of the y-field indices can be

made as in the free case, but only 1n the continuum limit. Thus is clear since ¥ does not have a simple gauge trans-

formation, owing to 1ts non-locality in terms of x. The same also applies to the g-fields, as will be explamned below.
For this reason, 1t 1s tempting to define a gauge covariant quark field in configuration space, for example [3]

Q"“’(y)=—% %) FA2UL0)x40) 6“”@)=% ? X4)U ST,

U4 0) = (U Uy +ad )12 [Us (0 +aldy + AN U4 + a4, + 4,y + 45004 (13)

Here, U 4(v) 1s a product of hinks from y +aA to one specified corner of the hypercube, thus giving Q a simple

(i.e. covariant) gauge transformation law. However, these covariant quark fields do have some disadvantages:

— Choosing one particular corner and one particular path as in (13) results 1n the Q-fields, and hadron fields con-
structed from them, losing most of the lattice symmetries. The implications of breaking the symmetry for the
validity of the flavour identification, as well as for the restoration of the symmetry group in the contmuum
limit, are unclear. For example, there is no symmetry to prevent the occurrence of a hinearly divergent term
(i.e. an @~} mass counterterm) in the Q-field propagator. Such a term would violate chiral symmetry, and 1n-
troduce the fine-tuning problems familiar from Wilson and Kahler—Dirac fermions [7]. On the other hand, for
the y-field propagator, symmetry does not allow this kind of term.

— Perturbation theory in terms of Q-fields is unpleasantly complicated, due to the appearance of ¥ 40).

— Hadron fields defined via Q-fields contain more link variables than 1s necessary, since all the connection paths
have to go through one particular corner of the hypercube. This leads to greater fluctuations and poorer statis-
tics 1n a Monte Carlo simulation.

The q-fields, on the other hand, retain most of the lattice symmetries. We therefore propose to retamn, even in
the interacting case, the definition (3) for configuration space quark fields. As 1s the case with the -fields, the
flavour identification of the g-fields applies only in the continuum limat,

4. In fact, the definitions Y and q comncide in the contnuum Limit. The general relationship between them may
easily be derived. From egs. (2), (3) and (6) we find

qeop) =g 2 TE" D explap BYE 45) . 3°(p) = § 2, a0 B expapB) . (19)
Hence, from (9) and (10)
TO)=TO®), v =a0)T (), (15)

where T(p) ts a unitary transformation with the alternative forms

1 . 2 aa,b
T(p)@8b = y ? 1"301"2517 exp(—iap+A) = exp(i ? p =181+ VY5 ® tuts)) . (i6)
For the free theory 1t is evident that T(p) maps (11) 1nto (4). This was the only property required of the transfor-

mation previously given 1n refs. [3,5], which differs by a momentum dependent phase factor from T(p). However
this requirement does not determine the transformation uniquely but only up to a factor

s

75



Volume 175, number 1 PHYSICS LETTERS B 24 July 1986

exp(if 1@ 1),

where f1s an arbitrary real function of arbitrary parameters and ¢ 1s any hermitian combination of the flavour
matrices {1, tys W0, 1 1S, Is}.

On the other hand, the transformation 7(p) 1s defined uniquely from the definitions of q and ¥, and thus the
relationship (16) is valid 1n the general interacting case. Furthermore, smce T(p) depends only upon the physical
momentum and a, and not on any bare quantities, it tends to the identity in the continuum limit. Hence, 1n this
limit, we can 1dentify the g-field indices with spin and flavour. In particular, 1t 1s evident that the self-energy of
the g-fields 1s 1dentical to that of the y-fields (calculated to one loop in ref. [4]), so that there 1s no linearly di-
vergent term 1n the g-propagator.

This 1dentification has been remforced by the recent proof of the restoration of flavour symmetry n the con-
tinuum hmat [5]. This proof can also be carried out using the transformation T(p).

5 The transformations of the g-fields under the lattice symmetry can easily be derived either from those of
the x-fields [4,5] using (4), or from those of the y-fields [4] using (15) These laws are histed in the appendix of
ref [5].

The fields ¢ and q find their apphications 1n different areas of analysis. The g-fields, being local (1.e. within
one hypercube), are clearly amenable to use in numerical simulations, whereas weak coupling perturbation theory
(necessary to make the connection to the continuum) 1s most easily carried out in terms of the y-fields [4]. At
non-zero lattice spacing, both q and  are best regarded as rules for associating spin and flavour quantum numbers
to suttably defined gauge mnvariant lattice meson and baryon operators [8,9].
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